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FMRI? It's easy!
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Stage 1- Single Subject Analysis
•  afni_proc.py generates a Unix shell script to run a

standard sequence of tools on an individual subject’s
time series datasets.
–  Despiking
–  RETROICOR-izing
–  Time shifting
–  Volume registration
–  Blurring
–  Mask generation [not applied at individual subject level]
–  EPI Scaling
–  Regression analysis
–  Spatial normalization

•  Output datasets are ready for group-level analyses
•  All processing blocks are optional and customizable
•  Users are very encouraged to look at intermediary

results
– Data checking sequence automation
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Spikes and other spiky things
• Not all spikes are created equal

– Motion, usually OK
– Hardware spikes need to be dealt with
– Weirder artifacts appear with fancier equipment

• Spikes could get propagated with time series
filtering, such as slice timing correction.
– Reduce them before such operations

• Look at them before deciding what to do next
– If they are due to motion, then motion regressors

would absorb them
– Could add a regressor for a spike, or just censor time

point in latter analysis
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Movement Spikes
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Movement Spikes
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Hardware Spike
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• Spikes caused by loose gradient coil connection

Hardware Spike
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Weirder Spikes



Z.S.S 8-09

Weirder Spikes
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Weirder Spikes



Z.S.S 8-09

Weirder SpikesScanner glitch - IIScanner glitch - II
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Motion Correction
• Within-modality: T2* to T2* or T1 to T1

– Least squares cost functional is simple and robust
– For EPI time series, rigid body (6 parameters) is

typically used.
• Cross modality registration T1 to T2* for

example
– A variety of joint histogram based cost functionals

• Elegant and general purpose.
• But they can reach lowest cost at bad alignment

– We propose the use of Local Pearson Correlation for
an EPI to T1 cost functional
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Movement Corrected
spikes remain
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Movement Corrected
spikes remain
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Motion Correction
• Within-modality: T2* to T2* or T1 to T1

– Least squares cost functional is simple and robust
– For EPI time series, rigid body (6 parameters) is

typically used.
• Cross modality registration T1 to T2* for

example
– A variety of joint histogram based cost functionals

• Elegant and general purpose.
• But they can reach lowest cost at bad alignment

– We propose the use of Local Pearson Correlation for
an EPI to T1 cost functional
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•  Alignment of EPI T2*-weighted volumes to structural T1-
weighted volumes (e.g., MPRAGE or SPGR) using generic
inter-modality registration metrics (MI, CR) fails 10+% of the
time
– Brain outlines may match, but internal structures can be 10+ mm away
– Precise alignment needed for: cortical surface based analyses, use of

anatomically defined ROIs, pre-surgical planning, …

•  Local Pearson Correlation (LPC) metric (3dAllineate):
– Compute correlation coefficients between EPI and structural volume

locally over a collection of neighborhoods that cover the brain
– Average this collection of correlations, weighted towards CSF regions

(high intensity in EPI, low intensity in anatomical)
–  Optimization: adjust alignment until LPC is as negative as possible
– Variant: LPC has been used to register 7T and 3T MPRAGEs

•  More robust than Mutual Information or Correlation Ratio
•  But: user should always check image alignments visually!!

– Edge enhanced image overlays are useful for this purpose

T2*⇔T1
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Results: EPI Edges Atop Anatomical Slices
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LPCCR

Results: EPI Edges Atop Anatomical Slices
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Stimulus Correlated Movement
• By accident

– Stimulus induced
• Could confound results

– Can happen in subtle ways as tensing up shoulders
or changing breathing depth

– Warning sign is stimulus-correlated signals on edge
of brain

• Careful consideration of stimulus timing can
reduce this problem

– Uncorrelated with Stimulus
• Adds variance to data, resulting in less power

• By design
– Speech production, swallowing, etc.
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"Activation" Artifacts

jaw clenching

t

t
overt speaking

t

t

R.M. Birn, et al. Human Brain Mapping 7(2), 106-114, 1999

• Non-BOLD signal changes correlated with task timing
Slide courtesy of R. Birn
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BOLD response
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Event-Related Design

Motion Effect is Immediate
BOLD Effect is Delayed



Slide from R. Birn

Avoid Motion by Optimizing Stimulus Timing 

0 50 100 150 200 250 300

Blocked
(motion highly
correlated)

Blocked /
Event-Related
(low correlation
w/ motion)

0 50 100 150 200 250 300

time (sec)
R.M. Birn, et al.,  NeuroImage, 23, 1046-1058, 2004.
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Physiological Signal Monitoring
• Heart pulsation and breathing add variance to BOLD

signals
– Direct effects: movement of tissue and blood

– Indirect effects: changes in baseline oxygenation

• Modeling such effects reduces residual variance
– At least 30% in majority of voxels

• These effects can be especially troublesome in
resting state FMRI
– Effects can be coherent over distant parts of cortex

– Account for larger fraction of variance of interest

Glover et al., Magn Reson Med 2000

Wise et al., NI 2004; Birn et al., NI 2006,
2008; Shmueli et al., NI 2007; Bianciardi et
al., MRI 2009; Chang et al., NI 2009
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RETROICOR and RVT correction



Respiration volume
per unit time (RVT)

regressor

Cardiac rate (CR)
regressor

Shmueli et al, NI, 2007

0   1   2   3   4   5   6   7   8   9  10     t(s)

Birn et al., NI, 2006

* * *

* *

* * * * * * *
*

ΔRΔR
ΔtR

Physiologic rate regressors: modeling issues

ΔtC

1

ΔtR

The phase and the shape of the expected fMRI signal changes
due to fluctuations in the rates of respiratory and cardiac
pulsation are not fully understood…

ΔtC

~

~

Slide courtesy of M. Bianciardi
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Sample R-RICOR Result: Anat

Data courtesy of K. Simonyan
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Sample R-RICOR Result: Anat w/ EPI

Data courtesy of K. Simonyan
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SSE Ratio > 1.3: No Motion/Full Model

0

5+

Data courtesy of K. Simonyan
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0

5+

SSE Ratio > 1.3: No R-RICOR/Full Model

Data courtesy of K. Simonyan
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0

5+

SSE Ratio > 1.5: No Motion/Full Model

Data courtesy of K. Simonyan
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0

5+

SSE Ratio > 1.5: No R-RICOR/Full Model

Data courtesy of K. Simonyan
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R-RICOR, Motion SSE Ratio Overlap

RR Mot both
Data courtesy of K. Simonyan
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Linear Regression In Stage 1
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Response to brief
activation (< 1 s):
• delay of 1-2 s
• rise time of 4-5 s
• fall time of 4-6 s
• model equation:

• h(t ) is signal
change t seconds
after activation

•  HRF is the idealization of measurable FMRI signal change
responding to a single activation cycle (up and down) from a
stimulus in a voxel

h(t)! t
b
e
" t /c

1 Brief Activation (Event)

Hemodynamic Response Function (HRF)
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Convolution Signal Model
•  FMRI signal model (in each

voxel) is taken as sum of the

individual trial HRFs (assumed
equal)
 Stimulus timing is assumed known (or
measured)

 Resulting time series (in blue) are called
the convolution of the HRF with stimulus
timing

 Finding HRF = “deconvolution”
 AFNI code

:3dDeconvolve,3dREMLfit
 Convolution models only the FMRI signal

changes

22 s

120 s

• Real data starts at and
  returns to a nonzero,
  slowly drifting baseline
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•  Assume a fixed shape h(t ) for the HRF
  e.g., h(t ) = t 

8.6 exp(-t /0.547)   [MS Cohen, 1997]

  Convolve with stimulus timing to get ideal response

•  Assume a form for the baseline (data without activation)
  e.g.,  a + b⋅t   for a constant plus a linear trend

•  In each voxel, fit data Z(t ) to a curve of the form
         Z(t ) ≈ a + b ⋅ t + β ⋅ r (t )

•  a, b, β are unknown values to be found in each voxel
•  a, b are “nuisance” parameters
•  β is amplitude of r (t ) in data = “how much” BOLD

• In this model, each stimulus assumed to get same BOLD response — in
shape and in amplitude

Simple Regression Models

The signal model!

r(t) = h(t !"
k
)

k=1

K

# = sum of HRF copies
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Equations: Matrix-Vector Form
•  Express known data vector as a sum of known

columns with unknown coefficents:
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• Const  baseline
• Linear trend
• Response to stim#1
• Response to stim#2
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Solving z≈Rβ for β
•  Number of equations = number of time points

–  100s per run, but perhaps 1000s per subject
•  Number of unknowns usually in range 5–50

•  Least squares solution: β = [RTR]-1RT z
  β denotes an estimate of the true (unknown) β

  From β , calculate z = R β as the fitted model

• z - z  is the residual time series = noise (we hope)

• Statistics measure how much each regressor helps reduce residuals

•  Collinearity: when matrix      RTR      can’t be inverted
  Near collinearity: when inverse exists but is huge



Z.S.S 8-09

•  Choose HRF model h(t) [AKA fixed-model regression]

•  Build model responses rn(t) to each stimulus class
  Using h(t) and the stimulus timing

•  Choose baseline model time series
  Constant + linear + quadratic (+ movement?)

•  Assemble model and baseline time series into the columns
of the R matrix

•  For each voxel time series z, solve z≈Rβ for β
•  Individual subject maps: Test the coefficients in β that you

care about for statistical significance
•  Group maps: Transform the coefficients in β that you care

about to Talairach space, and perform statistics on the
collection of β values across subjects

Simple Regression: Recapitulation
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Take a look at your model fit



Z.S.S 8-09

Same Voxel: Runs 1 and 2

Block-trials: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points/run

model fitted to data

data

model regressor

Noise ≈ same size as Δsignal
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Two Voxel Time Series from Same Run

correlation with ideal = 0.56

correlation with ideal = – 0.01
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Data courtesy of Der-Yow Chen & Alan Koretsky,
NINDS/NIH
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Data courtesy of Der-Yow Chen & Alan Koretsky,
NINDS/NIH
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loPC_Layer 2PC_Layer 3

Data courtesy of Der-Yow Chen & Alan Koretsky,
NINDS/NIH
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Deconvolution Deconvolution SignalSignal Models Models
•  Simple or Fixed-shape regression :

–  We fixed the shape of the HRF — amplitude varies

–  Used -stim_times to generate the signal model (AKA
the “ideal”) from the stimulus timing

–  Found the amplitude of the signal model in each voxel —
solution to the set of linear equations = β weights

•  Deconvolution or Variable-shape regression :
–  We allow the shape of the HRF to vary in each voxel, for

each stimulus class
–  Appropriate when you don’t want to over-constrain the

solution by assuming an HRF shape
–  Caveat : need to have enough time points during the

HRF in order to resolve its shape (e.g., TR ≤ 3 s)
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Deconvolution: Pros & Cons (+ & –)
+   Letting HRF shape varies allows for subject and

regional variability in hemodynamics
+   Can test HRF estimate for different shapes (e.g.,

are later time points more “active” than earlier?)

+   Weird shapes in HRF usually indicate problem
with timing, design, etc.

–   Need to estimate more parameters for each
stimulus class than a fixed-shape model (e.g., 4-15
vs. 1 parameter = amplitude of HRF)

–   Which means you need more data to get the
same statistical power (assuming that the fixed-shape
model you would otherwise use was in fact “correct”)
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Expressing HRF via Regression Unknowns
•  The tool for expressing an unknown function as a

finite set of numbers that can be fit via linear
regression is an expansion in basis functions

–  The basis functions ψq(t ) & expansion order p are known
•  Larger p ⇒ more complex shapes & more parameters

–  The unknowns to be found (in each voxel) comprises the set of
weights βq for each ψq(t )

•  β weights appear only by multiplying known
values, and HRF only appears in signal model by
linear convolution (addition) with known stimulus
timing
•  Resulting signal model still solvable by linear regression
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•  Need to describe HRF shape and magnitude with a finite
number of parameters
–  And allow for calculation of h(t ) at any arbitrary point in time after the

stimulus times:

•  Simplest set of such functions are tent functions
–  Also known as “piecewise linear splines”

T (x) =
1! x for !1 < x < 1

0 for x > 1

"
#
$

time

h

t = 0 t =TR t = 2⋅TR t = 3⋅TR t = 4⋅TR t = 5⋅TR
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t ! 3 "TR
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#
$%

&
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3dDeconvolve with “Tent Functions”

r
n
= h(t

n
!"

k
)

k=1

K

# = sum of HRF copies
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Tent Functions = Linear Interpolation
•  Expansion of HRF in a set of spaced-apart tent functions is

the same as linear interpolation between “knots”

•  Tent function parameters are also easily interpreted as
function values (e.g., β2 = response at time t = 2⋅L after stim)

•  User must decide on relationship of tent function grid spacing
L and time grid spacing TR (usually would choose L ≥ TR)

•  In 3dDeconvolve/3dREMLfit: specify duration of HRF and
number of β parameters
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Deconvolution Regression

• Estimation of temporal correlation in
HRF βs allows for testing of HRF
shape-based hypothesis between
subjects and/or stimulus classes

Fig. 4 From Geier C.F. et al. NI07
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•  AM = Amplitude Modulated (or Modulation)
– Have some extra data measured about each response to a stimulus,
and maybe the BOLD response amplitude is modulated by this

– Reaction time; Galvanic skin response; Pain level perception;
Emotional valence (happy or sad or angry face?)

• Want to see if some brain activations is linearly proportionally
to one or more ABI (Auxiliary Behaviorial Information)

AM Regression - 1AM Regression - 1

• Need to make 2 separate regressors
– One to find the mean FMRI response (the usual -stim_times analysis)
– One to find the variations in the FMRI response as the ABI data varies

• The second regressor should have the form

– Where ak = value of k th ABI value, and a is the average ABI value
• Statistics and β for second regressor make activation map of

places whose BOLD response changes with changes in ABI

r
AM2
(t) = h(t !"

k
) # (a

k
! a

k=1

K

$ )
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•  IM = Individual Modulation
–Compute separate amplitude of response for each
stimulus

•Instead of computing average amplitude of responses to
multiple stimuli in the same class

–Response amplitudes (βs) for each individual
block/event will be highly noisy

•Can’t use individual activation map for much
•Must pool the computed βs in some further statistical
analysis (t-test? inter-voxel correlations in the βs? model βs as a
function of some stimulus parameter ?)

–Usage: -stim_times_IM k tname model
•Like -stim_times, but creates a separate regression
matrix column for each time given

IM Regression - 1IM Regression - 1
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• IM estimates over 64 stimulus events
• Experiment: 64 blocks of sensorimotor task (8 runs each with

8 blocks)
• No exciting trend there, but notice sign reversal due to

protocol error.

IMIM Regression - 2 Regression - 2

Plot of 64 BLOCK βs from -cbucket output

N.B.: sign reversal in run #4 = stimulus timing error!
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Variance and serially correlated noise
• White noise estimate of variance:

–  N = number of time points; i = time index
–  m = number of fit parameters
–  N – m = degrees of freedom (DOF) = how many equal-variance

independent random values are left after the time series is fit with m
regressors

•OLSQ assumption is that each of the N noise values in the data time series
are equal-variance and independent (AKA white noise)

• If noise values aren’t independent, then N – m is too large an
estimate of DOF, so variance estimate is too small

• Two possible solutions are:
1)Adjust variance estimate (and so the t- and F-values) to allow for fewer

DOF
2)Come up with a different variance estimator that has all N – m DOF

possible (3dREMLfit )
o Requires estimating the temporal correlation structure of the noise as well
o Once temporal correlation matrix is known, use Generalized Least Squares
(GLSQ; AKA pre-whitening) to estimate β parameter vector
o GLSQ is consistent and should produce β with smaller variance than OLSQ

!̂ 2
=

1

N " m
[data

i
" fit

i

i=0

N"1

# ]
2
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OLSQ and GLSQ
• Activation magnitudes (β s) estimated using OLSQ

(Ordinary Least Squares) are consistent
– “Consistent” means that if you repeated the identical experiment

infinitely many times, and averaged the estimated value (e.g., β ; σ2),
result would be the true value

• Variance of β s (σ2s) is under-estimated with OLSQ in the
presence of serial correlation
–  If the variance is under-estimated, then the individual subject t- and

F-statistics will be over-estimated

•  Group (stage 2) models that ignore (σ2s) (ttest, anova, etc)
give same results as models whether β s we obtained from
OLSQ or GLSQ.
– However newer approaches do carry β s and σ2s to group statistics

so GLSQ is needed

AFNI’s 3dMEMAKeith Worsley’s FMRIstat, FSL's FLAME
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Standard Space For Group Analysis
• Single subject data needs to be aligned to a group template

and resampled to a common grid
– This allows for a voxelise comparisons across subjects

TLRC
MNI
MNI-Anat.
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Atlases Distributed With AFNI
TT_Daemon

• TT_Daemon   : Created by tracing Talairach and Tournoux brain illustrations.
–    Generously contributed by Jack Lancaster and Peter Fox of RIC UTHSCSA)
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Atlases Distributed With AFNI
Anatomy Toolbox: Prob. Maps, Max. Prob. Maps

• CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with
some created from cytoarchitectonic studies of 10 human post-mortem brains

– Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME,
Julich, Germany Eickhoff S. et al. 05
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Atlases Distributed With AFNI:
Anatomy Toolbox: MacroLabels

• CA_N27_MPM, CA_N27_ML, CA_N27_PM: Anatomy Toolbox's atlases with
some created from cytoarchitectonic studies of 10 human post-mortem brains

– Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME, Julich,
Germany



Z.S.S 8-09

  [Where am I?]

Shows you where you
are in various atlases.
(works in +orig too,
if you have a TT
transformed parent)

For atlas installation,
and much much
more, see help in
command line
version:
whereami -help
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• In this example, 4 ROI clusters were found that fit the criteria designated by
the 3dclust command.  Below is an explanation of the output:

– Volume:     Size of each cluster volume
– CM RL:         Center of mass (CM) for each cluster in the Right-Left direction
– CM AP:     Center of mass for each cluster in the Anterior-Posterior direction
– CM IS:     Center of mass for each cluster in the Inferior-Superior direction
– minRL,maxRL:  Bounding box for cluster, min & max coordinates in R-L direction
– minAP,maxAP:  Bounding box for cluster, min & max coordinates in A-P direction
– minIS, maxIS:    Bounding box for cluster, min & max coordinates in I-S direction
– Mean:     Mean value for each volume cluster
– SEM:     Standard error of the mean for the volume cluster
– Max Int:     Maximum Intensity value for each volume cluster
– MI RL:     Maximum Intensity value in the R-L direction of each volume cluster
– MI AP:     Maximum intensity value in the A-P direction of each volume cluster
– MI IS:     Maximum intensity value in the I-S direction of each volume cluster

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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•  whereami can report on the overlap of ROIs with atlas-
defined regions

whereami -omask anat_roi+tlrc
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Localization In Standard Spaces
• Single location not enough
• Specify units, template, and space
• Describe coverage
• Look at the data, know the anatomy
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MMuullttii  -Voxel
Statistics

Spatial Clustering
&&

False Discovery Rate:

“Correcting” the Significance
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Basic Problem
•  Usually have 20-100K FMRI voxels in the brain
•  Have to make at least one decision about each one:

–  Is it “active”?
•  That is, does its time series match the temporal pattern of activity we

expect?

–  Is it differentially active?
•  That is, is the BOLD signal change in task #1 different from task #2?

•  Statistical analysis is designed to control the error
rate of these decisions
–  Making lots of decisions: hard to get perfection in

statistical testing
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• Two types of errors
–  What is H0 in FMRI studies? H0: no effect (activation, difference, …) at a voxel

–    Type I  error  = Prob(reject H0 when H0 is true) = false positive = p value
Type II error  = Prob(accept H0 when H1 is true) = false negative = β

power = 1–β = probability of detecting true activation

–  Strategy: control type I error while increasing power (decrease type II errors)
–  Significance level α (magic number 0.05) : p < α

Type II ErrorType II Error
(defendant very

happy)
Correct

Fail to Reject
Presumption of
Innocence (Not
Guilty Verdict)

Correct
Type I ErrorType I Error

(defendant very
unhappy)

Reject
Presumption of
Innocence
(Guilty Verdict)

Defendant
Guilty

Defendant
Innocent

Justice System: Trial
              Hidden Truth

Type II ErrorType II Error
(false negative)Correct

Don’t Reject H0
(decide voxel isn’t
activated)

CorrectType I ErrorType I Error
(false positive)

Reject H0
(decide voxel is
activated)

H0 False
Activated

H0 True
Not Activated

Statistics: Hypothesis Test
               Hidden Truth

Multiple Testing Corrections
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•  Family-Wise Error (FWE)
–  Simple probability example: sex ratio at birth = 1:1

• Chance there are 5 boys in a family with 5 kids:  (1/2)5 ≈ 0.03
• For 10,000 families with 5 kids, expected #families with 5 boys:

10,000 × (2)–5 ≈ 312

–  Multiple testing problem: voxel-wise statistical analysis
• With N voxels, what is the chance to make a false positive error

(Type I) in one or more voxels?
   Family-Wise Error: αFW = 1–(1–p)N →1 as N increases
• For N⋅p small (compared to 1), αFW ≈ N⋅p
• N ≈ 20,000+ voxels in the brain
• To keep probability of even one false positive αFW < 0.05 (the

“corrected” p-value), need to have p < 0.05 / 2×104 = 2.5×10–6

• This constraint on the per-voxel (“uncorrected”) p-value is so
stringent that we’ll end up rejecting a lot of true positives (Type II
errors) also, just to be safe on the Type I error rate

– Group analysis is the most severe situation
• (have the least data, considered as number of independent

samples = subjects)
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• Bonferroni correction
–  Use p = α /N as individual voxel significance level to

achieve αFW = α
  Too stringent and overly conservative: p = 10–8…10–6

•  Rescue from hell of statistical super-conservatism?
  Correlation: Voxels in the brain are not independent

 Especially after we smooth them together!
 Means that Bonferroni correction is way way too stringent

  Contiguity: Structures in the brain activation map
 We are looking for activated “blobs”: the chance that pure noise (H0)

will give a set of seemingly-activated voxels next to each other is
lower than getting false positives that are scattered apart

  Control FWE based on spatial correlation and minimum
cluster size we are willing to accept

•  Control false discovery rate (FDR)
–  FDR = expected proportion of false positive voxels among

all detected voxels

Approaches to the “Curse of Multiple Comparisons”
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• Example:  AlphaSim -nxyz 64 64 20 -dxyz 3 3 5 \
                   -fwhm 5 -pthr 0.001 -iter 1000
• Output is in 6 columns: focus on 1st and 6th columns (ignore others)

– Cl Size     Frequency    CumuProp Alpha

        1         47064    0.751113 1.000000
        2         11161    0.929236 1.000000

… … … …
        6           111    0.998995 0.158000
        7            32    0.999505 0.058000
        8            20    0.999825 0.029000
        9             8    0.999952 0.010000
       10             2    0.999984      0.003000

 At this uncorrected p = 0.001, in this size volume, with noise of this smoothness:
the chance of a cluster of size 8 or larger occurring by chance alone is 0.029

 May have to run several times with different uncorrected p
 uncorrected p↑  ⇔⇔  required minimum cluster size↑
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Basic Ideas Behind FDR q
• If all the null hypotheses are true, then the statistical

distribution of the p-values will be uniform
– Deviations from uniformity at low p-values ⇒ true positives
– Baseline of uniformity indicates how many true negatives are hidden

amongst in the low p-value region

31,555 voxels
50 histogram binsRed = ps from Full-F (actual data)

Black = ps from pure noise (simulation)
(baseline level of red curve = false +ʼs)

threshold at this p

Zoom-in

False +

True +
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Adapting FDR to get MDF - 1
• MDF = Missed Detection Fraction

= fraction of true positives with p-value below a threshold
 Raise threshold enough: MDF goes to 100% as FDR goes to 0%

= typically 50+% in FMRI: we’re missing 1/2 the activations!
 Estimate m1 = total fraction of true positives in data

• Compare bulk of p-value histogram with uniform
distribution assuming no true positives

• Deficit between data’s p histogram and uniform
histogram gives estimated number of true positives

31,555 voxels
50 histogram bins

[Same data as before]
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Adapting FDR to get MDF - 2
At given threshold: have J detections out of N voxels

– # false detections ≈ qJ
– # true detections ≈ (1−q)J
– Fraction of true detections =
    # true detections ÷ # true positives ≈ (1−q)J ÷ m1N
– ∴ Missed detection fraction = MDF ≈ 1− [(1−q)J ÷ m1N ]

• MDF estimate is in a popup “hint” in AFNI GUI

• The key to getting MDF is a good estimator for m1
– Which is hard to do accurately (e.g., lots of assumptions)
– So MDF is just a crude approximation at this time
– Estimate of m1 is also used to adjust FDR:  q′ = (1−m1)q
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Group (Stage 2) analysis
• Earlier approaches only carry beta coefficients to

the group level analysis
– Within/intra-subject variability (standard error,

sampling error) is relatively small compared to
cross/between/inter-subjects variability

– Within/intra-subject variability roughly the same
across subjects

• TTest (paired, unpaired)
• ANOVA (1-5 way)
• 3dLME combination of random and fixed effects

analysis
–  Unbalanced designs (unequal # of subjects, missing data, etc.)
–  ANOVA and ANCOVA, with unlimited # of factors & covariates
–  Violations of sphericity: heteroscedasticity, variance-covariance

structure of observations (e.g., temporal correlation in HRF βs)
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Group (Stage 2) analysis
• Newer approaches carry beta and variance

– 3dMEMA (heteroscedasticity, account for beta
variance)

• Trust those β’s with high reliability/precision (small SE or σ)
through weighting

– β with lower SE has more say in the final result
– β with less significance gets downgraded

– Results are more robust than earlier approaches
– But more limited in types of tests than other such as

3dLME
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Results: 3dANOVA vs. 3dMEMA
ANOVA:
12 Control
subjects

MEMA:
Control
subjects

MEMA:
Patients

ANOVA:
12 Patients

Data courtesy
James Bjork
NIDA/NIH
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Results: 3dANOVA vs. 3dMEMA

Data courtesy
James Bjork
NIDA/NIH

MEMAANOVA Same uncorrected p-values;
ANOVA does not survive FDR;
MEMA laughs at such quibbles

ventral striatal activation in an incentive task

Volume rendering movie pair
made in AAFFNNII : 5-10 min work
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Results: 3dttest vs. 3dMEMA
• Color = Difference between t-statistics in voxels with t(30) > 2

Majority of significant voxels gained power (warm colors)
Data courtesy
Vince Costa

U Florida

(red >= 2.8, 1.7 <= orange < 2.8; 0.5 <= yellow < 1.7; -0.5 <= green < 0.5; blue <= -0.5)
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Start simple: one-sample test
• Random-effects: yi=θi+εi=α0+δi+εi, for ith subject

– yi : β or linear combination (contrast) of β’s from ith subject
– θi=α0+δi: “true” individual effect from ith subject
– α0: group effect we’d like to find out
– δi : deviation of ith subject from group effect α0, N(0, τ2)
– εi: sample error from ith subject, N(0, σi

2), σi
2 known!

• Special cases
– σi

2=0 reduced to conventional group analysis:
One-sample t: yi = α0 +δi

– δi=0 (τ2=0) assumed in fixed-effects model: Ideally we could find
out all possible explanatory variables so only an FE model is
necessary!
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• Random-effects: yi = α0 +δi + εi, for ith subject
– δi ~ N(0, τ2), εi ~ N(0, σi

2), σi
2 known, τ2 unknown

– What can we achieve?
Null hypothesis about group effect H0: α0 = 0
Checking group heterogeneity H0: τ2

 = 0
Any outliers among the subjects? Adding some confounding

variable(s)? Grouping subjects?

– We know σi
2, and pretend we also knew τ2, weighted least

squares (WLS) gives
The “best” estimate
 BLUE: unbiased with minimum variance

– Unfortunately we don’t know τ2

! 

"
0

=
wiyi#
wi#

,wi =
1

$ 2 +% i

2

MEMA with one-sample test
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• Estimating τ2: a few approaches
– Method of moment (MoM) - DSL
– Maximum likelihood (ML)
– Restricted/residual/reduced/marginal ML (REML): 3dMEMA

• Statistical testing
– Group effect α0=0:

Wald or Z-test: assume enough subjects with normal
distributions

Go with t-test when in doubt

– Heterogeneity test τ2=0:
– Outlier identification for each subject through Z-statistic

Solving MEMA

! 

Z =
w

i
y
i"

w
i"
# N(0,1),w

i
=

1

$ 2
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2
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A slightly more complicated case
yi = α0 +α1xi1 +…+αipxip +δi + εi, for ith subject

– Mixed-effects model or meta regression
– yi: β or linear combination (contrast) of β’s from ith subject
– α0: common group effect we’d like to find out
– xij: an indicator/dummy variable showing, for example,

group to which ith subject belongs, level at which a factor
lies, or a continuous variable such as covariate (e.g., age,
IQ) (j=1,…,p)

– δi : deviation of ith subject from group effect α0, N(0, τ2)
– εi: sample error from ith subject, N(0, σi

2), σi
2 known!

Combine subjects into a concise model in matrix
form
– yn×1 = Xn×pαp×1 + δn×1 + εn×1

– y ~ N(Xα, τ2In+V), V = diag(σ1,…, σn) known, τ2 unknown
– Estimate α and τ2 simultaneously via maximizing REML
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Covariates
Covariates

– May or may not be of direct interest
– Confounding, nuisance, or interacting variables
– Subject-level
– Continuous or discrete
– One-sample model yi = α0+α1xi+δi + εi, for ith

subject
– Two-sample model yi = α0+α1x1i+α2x2i+α3x3i+δi +
εi

Examples
– Age, IQ, brain volume, cortex thickness
– Behavioral data
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Handling covariates: one group
Centering:

– yi = α0+α1xi+δi + ε, for ith subject
– Interested in group effect α0 (x=0) while controlling

(partialling out) x
– α1 - slope (change rate): % signal change per unit of x
– Interpretability: group effect α0 at what value of x: mean or

any other value?
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Covariates: trickier with > 1 group
Center and slope

– yi = α0+α1x1i+α2x2i+α3x3i+δi + ε, for ith subject
• x1: group indicator
• x2: covariate
• x3: group effect in slope (interaction btw group and

covariate)
– What we’re interested in

• Group effects α0 and α1 while controlling covariate
– Interpretability

• Center
– Group effect α0 and α1 at  what covariate value?
– Same or different center across groups?

• Slope
– same (α3=0) or different (α3≠0) slope across groups
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Covariates: scenarios with 2 groups
 Center and slope

– yi = α0+α1x1i+α2x2i+α3x3i+δi + εi, for ith subject
– Interpretability

• Same center and same slope (α3=0)
• Different center with same slope (α3=0)
• Same center with different slope (α3≠0)
• Different center and different slope (α3≠0)

Group1

Group2
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Covariates: scenarios with 2 groups

• If covariate for each group
is centered on same value
– Group effect constant

regardless of that value
• Else group effect depends

on centering difference

Group1

Group2

• When slopes are different:
– Group effect depends on

covariate value, even when
centering is properly done
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Covariates: scenarios with 2 groups
Group1

Group2

• Just "Regressing Out" a covariate is not enough!
– Need to center properly
– Need to consider covariate value (if α3 significant)
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Notes on a scandal
• Beware selection bias / circularity

Circular analysis in systems neuroscience: the dangers of double dipping.
Kriegeskorte et al. Nature Neuroscience 12(5) 2009

Voodoo correlations in social neuroscience
(now known as Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition)

Vul et al.  Perspectives in Psychological Science 2009
Correlations in Social Neuroscience Aren't Voodoo: Commentary on Vul et al. 

Lieberman et al. Perspectives in Psychological Science  2009 

… (6 more commentaries/responses!) …

Big Correlations in Little Studies Inflated fMRI Correlations Reflect Low Statistical Power
Tal Yarkoni Perspectives in Psychological Science 2009

• Avoid hysteria
• Consider your false negatives



Z.S.S 8-09

ROI selection bias

true region

Slide from N. Kriegeskorte
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ROI selection bias

true region

RO
I‐a

ve
ra
ge
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1
va
1
on

overes1mated effect

ROI
overfi7ed

Slide from N. Kriegeskorte
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ROI definition is affected by noise

true region
ROI

RO
I‐a

ve
ra
ge

ac
1
va
1
on

overfi7ed

overes1mated effect

independent
 ROI

Slide from N. Kriegeskorte
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Regional-average activation analysis

true effects

A
condi1on

B C D

fM
RI
 s
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l

central slice

Slide from N. Kriegeskorte
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Regional-average activation analysis

true effects

overfi7ed ROI

contrast hypothesis

A
condi1on

B C D

fM
RI
 s
ig
na

l

A ‐D

p<0.0001 (uncorr.)
p<0.05 (corrected)

central slice

p<0.01

Slide from N. Kriegeskorte
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Regional-average activation analysis

Slide from N. Kriegeskorte

true effects

A
condi1on

B C D

fM
RI
 s
ig
na

l

overfi7ed ROI

contrast hypothesis

A ‐D

central slice

p<0.01

p<0.0001 (uncorr.)
p<0.05 (corrected)

independent‐data ROI
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Regional-average activation analysis
(1)- Bias towards high values of A

AND
No bias towards B

(2)- Higher threshold (t) to meet
multiple comparison correction
- The higher the threshold the

worse the bias in (1)
(problem made worse in low

power cases) 1 & 2 result in sample
where A > B !
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Notes on a scandal
• Beware selection bias / circularity
• Avoid hysteria

– Circularity can lead to incorrect inferences
– Ginormoulsy high correlations

• Maybe caused by circularity
• More likely caused by low power (very small

number of subjects, many voxels)
• But this does not mean that correlations do not

exist!
– But the average correlation of those that pass a high

threshold can be much higher than true correlation

• Consider your false negatives
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Notes on a scandal
• Beware selection bias / circularity
• Avoid hysteria
• Consider your false negatives

– What's wrong with being 'safe'?
• We are likely missing A LOT (>50%) of true positives
• Wrong models about how the brain works !

– Connectivity models very sensitive to the nodes in model

– What can be done?
• More power by better modeling signal AND noise
• More power by having more subjects
• Judicious covariate selection
• Consider what happens at lower thresholds.

– More nodes or just bigger blobs?
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